Call Now

Rhesus EphB1 / EPHT2 Protein (His Tag)

EPHB1

Catalog Number P90040-C08H
Organism Species Rhesus
Host Human Cells
Synonyms EPHB1
Molecular Weight The recombinant rhesus EPHB1 comprises 534 amino acids and has a calculated molecular mass of 59.9 KDa.
predicted N Met 18
SDS-PAGE
Purity > 85 % as determined by SDS-PAGE
Protein Construction A DNA sequence encoding the rhesus EPHB1 (XP_001115263.1) (Met1-Pro540) was expressed with a polyhistidine tag at the C-terminus.
Bio-activity
Research Area Cancer |Oncoprotein & suppressor & biomarker |Tumor suppressor
Formulation Lyophilized from sterile PBS, pH 7.4.
1. Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA.
Background Ephrin type-B receptor 1, also known as EphB1, belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family which 16 known receptors (14 found in mammals) are involved: EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHA9, EPHA10, EPHB1, EPHB2, EPHB3, EPHB4, EPHB5, EPHB6. EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine formation. The Eph family of receptor tyrosine kinases (comprising EphA and EphB receptors) has been implicated in synapse formation and the regulation of synaptic function and plasticity6. Ephrin receptors are components of cell signalling pathways involved in animal growth and development, forming the largest sub-family of receptor tyrosine kinases (RTKs). Ligand-mediated activation of Ephs induce various important downstream effects and Eph receptors have been studied for their potential roles in the development of cancer. EphB receptor tyrosine kinases are enriched at synapses, suggesting that these receptors play a role in synapse formation or function. We find that EphrinB binding to EphB induces a direct interaction of EphB with NMDA-type glutamate receptors. This interaction occurs at the cell surface and is mediated by the extracellular regions of the two receptors, but does not require the kinase activity of EphB.
Reference
  • Dalva MB, et al. (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell. 103(6): 945-56.
  • Takasu MA, et al. (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 295(5554): 491-5.
  • Adams RH, et al. (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13(3): 295-306.